Theorema Aljabar Boolean
T1: Commutative Law
a. A + B = B + A
b. A . B = B . A
T2: Associative Law
a. ( A + B ) + C = A + ( B + C )
b. ( A . B ) . C = A . ( B . C )
T3: Distributive Law
a. A . ( B + C ) = A . B + A . C
b. A + ( B . C ) = ( A + B ) . ( A + C )
T4: Identity Law
a. A + A = A
b. A . A = A
T5: Negation Law
1. ( A’ ) = A’
2. ( A’ )’ = A
T6: Redundant Law
a. A + A . B = A
b. A . ( A + B ) = A
T7: Identity law
a. 0 + A = A
b. 1 . A = A
c. 1 + A = 1
d. 0 . A = 0
T8: Negation law
a. A’ + A = 1
b. A’ . A = 0
T9: Redundace law
a. A + A’ . B = A + B
b. A . ( A’ + B ) = A . B
T10: De Morgan’s Theorem
a. (A+B)’ = A’ . B’
b. (A . B)’= A’ + B’
Tidak ada komentar:
Posting Komentar